Text

Preprocessing and Edit
Distance

What is text preprocessing?

- The process of automatically organizing, normalizing, and manipulating text so it can be handled more easily by downstream language processing tasks.
"Have some wine," the March Hare said in an encouraging tone.

Alice looked all round the table, but there was nothing on it but tea. "I don't see any wine," she remarked.
"There isn't any," said the March Hare.

- Lewis Carroll, Alice's Adventures in

Wonderland
have some wine [PERSON 1] said in an encouraging tone
[PERSON 2] looked all round the table but there was nothing on it but tea
i don't see any wine she remarked
there isn't any said [PERSON 1]

- Lewis Carroll, Alice's Adventures in Wonderland

Text preprocessing steps can (and should!) vary depending on your needs.

?

British vs. American_spellings(for English text)
Not Important

This Week's Topics

Regular expressions

Finite state automata

Thursday
Tuesday

Finite state transducers
Additional ways to preprocess text
Edit distance

This Week's Topics

Regular expressions
Finite state automata

Thursday

Finite state transducers
Additional ways to preprocess text
Edit distance

One way to preprocess text is by using regular expressions.

- Regular expressions: A formal language for specifying text strings.
- How can we search for any of these?
- Donut
- donut
- Doughnut
- doughnut
- Donuts
- doughnuts

Regular Expression Terminology

Regex: Common abbreviation for regular expression

Disjunction: Logical OR

Range: All characters in a sequence from $\mathrm{C}_{1}-\mathrm{C}_{2}$

Negation: Logical NOT

Scope: Indicates to which characters the regex applies
Anchor: Matches the beginning or end of a string

Disjunctions and Ranges

- Disjunction: Letters inside square brackets [az]
- Range: Hyphen between the first and last characters in the range $[a-z]$

Pattern	Matches	Example
[dD]onut	donut, Donut	This morning would be better with a donut.
[0123456789]	Any digit	This morning would be better with 5 donuts.
[A-Z]	An uppercase letter	Donuts are an excellent way to start the day.
[0-9]	Any digit	I just ate 5 donuts.

Pattern	Matches	Example
[^dD]onut	Any letter except "d" or "D" before the sequence "onut"	This morning would be better with a coconut.
$\left[{ }^{\wedge} \mathrm{A}-\mathrm{Z}\right]$	Not an uppercase letter	excellent way to start the day.
[^^] $^{\text {D^o }}$	Not a caret	What is your favorite kind of donut?
	The pattern "D^o"	Is D^onut a good name for my donut shop?

- Negation: A caret (^) at the beginning of a disjunction [$\left.{ }^{\wedge} \mathrm{az}\right]$
- The caret must be at the beginning of the disjunction to negate it

More about disjunctions!

- The pipe | indicates the union (logical OR) of two regular expressions
- $\mathrm{a}|\mathrm{b}| \mathrm{c}$ is equivalent to [abc]

Pattern	Matches	Example
$\mathrm{d} \mid \mathrm{D}$	"d" or "D"	This morning would be better with a donut.

Special Characters in Regular Expressions

- *: Means that there must be 0 or more occurrences of the preceding expression
- . A wildcard that can mean any character
- +: Means that there must be 1 or more occurrences of the preceding expression
- ?: Means that there must be 0 or 1 occurrences of the preceding expression
- \{m\}: Means that there must be m instances of the preceding expression
- \{m,n\}: Means that there must be between m and n instances of the preceding expression
- (abc): Means that the operation should be applied to the specified sequence
- I: Used to escape special characters so that the regular expression searches for their literal form

Regular Expressions: Special Characters

Pattern	Matches	Example
donuts*	"donut" or "donuts" or "donutss" or "donutsss"...	This morning I had many donuts.
onut	Any character followed by "onut"	Can I have a coconut donut?
donuts+	"donuts" or "donutss" or "donutsss"...	Do you want one donut or two donuts?
donuts?	"donut" or "donuts"	Do you want one donut or two donuts?
donuts\{1\}	"donuts"	Do you want one donut or two donuts?
donuts\{0,1\}	"donut" or "donuts"	Do you want one donut or two donuts?
o(nut)?	Any character followed by "o" or "onut"	Can I have a disco donut?
donutl.	"donut."	Please give me one donut.

Regular Expressions: Anchors

- Indicate that a pattern should be matched only at the beginning or end of a word

Pattern	Matches	Example
^Donuts	"Donuts" only when it is at the beginning of a string	Donuts are an excellent way to start the day.
donuts\$	"donuts" only when it is at the end of the string	I just ate 5 donuts

Shorthand Character Classes

- Many programming languages support several predefined, shorthand character classes for regular expressions:
- Id: Any digit
- ID: Any non-digit
- Is: Any whitespace
- IS: Any non-whitespace
- Iw: Any alphanumeric character
- IW: Any non-alphanumeric character
- lb: Empty string or certain characters at word boundaries
- Can be very helpful, but make sure to understand what patterns they're matching before using them
- May be defined differently from what you need!

Regular expressions are often trickier than they initially seem...

Errors

- When we match strings that we didn't want to match, we have false positive (Type I) errors
- When we don't match strings that we wanted to match, we have false negative (Type II) errors
- This is a recurring theme in NLP!
- Regardless of what application we're developing, we often try to do two things to improve performance:
- Increase accuracy or precision (minimizing false positives)
- Increase coverage or recall (minimizing false negatives)

Regular
 Expressions: Takeaway Points

- Regular expressions are powerful and have many different uses
- Text tokenization
- Text normalization
- Feature extraction
- They allow us to search for specific strings of text using disjunctions, negations, and a variety of special characters

This Week's Topics

Regular expressions
Finite state automata

Thursday

Tuesday

Finite state transducers
Additional ways to preprocess text
Edit distance

Regular expressions can be matched using finite state automata.

What are finite state automata?

- Computational models of regular languages
- Used to model regular expressions, but also used in other applications that function by transitioning between finite states
- Dialogue systems
- Morphological parsing
- Terminology:
- Singular: Finite State Automaton (FSA)
- Plural: Finite State Automata (FSAs)

Key Components

- Finite set of states
- Start state
- Final state
- Set of transitions from one state to another

How do FSAs work?

- For a given sequence of items (characters, words, etc.) to match, begin in the start state
- If the next item in the sequence matches a state that can be transitioned to from the current state, go to that state
- Repeat
- If no transitions are possible, stop
- If the state you stopped in is a final state, accept the sequence

FSAs are often represented graphically.

- Nodes = states
- Arcs = transitions

What do we
 know about this FSA?

- Five states
- q_{0} is the start state
- q_{4} is the final (accept) state
- Five transitions
- Alphabet $=\{a, b$, !\}

Regex that this FSA matches: baa+!

Regex that this FSA matches: baa+!

Test String: baa!

Regex that this FSA matches: baa+!

Test String: baa!

Regex that this FSA matches: baa+!

Test String: baa!

Regex that this FSA matches: baa+!

Test String: baa!

Regex that this FSA matches: baa+!

Test String: baa!

Regex that this FSA matches: baa+!

Test String: baa!

Regex that this FSA matches: baa+!

Regex that this FSA matches: baa+!

Test String: baabaa!

Regex that this FSA matches: baa+!

Test String! baabaa!

Regex that this FSA matches: baa+!

Test String: baabaa!

Regex that this FSA matches: baa+!

Test String: baabaa!

Regex that this FSA matches: baa+!

Test String: baabaa!

Regex that this FSA matches: baa+!

Regex that this FSA matches: baa+!

Note: More than one FSA can correspond to the same test string in a regular language!

Test String: baaa!

Test String: baaa!

Formal Definition

- A finite state automaton can be specified by enumerating the following properties:
- The set of states, \mathbf{Q}
- A finite alphabet, $\boldsymbol{\Sigma}$
- A start state, \mathbf{q}_{0}
- A set of accept/final states, FᄃQ
- A transition function or transition matrix between states, $\bar{\delta}(q, i)$
- $\bar{\delta}(\mathrm{q}, \mathrm{i}):$ Given a state $\mathrm{q} \in \mathrm{Q}$ and input $i \in \Sigma$, $\delta(q, i)$ returns a new state $q^{\prime} \in \mathbf{Q}$.

Example: FSA for Dollar Amounts

State transitions in FSAs can be represented using tables.

Next Item in Sequence

		b	a	!	<end>
	q_{0}				
	q_{1}				
$\underset{ \pm}{\lambda}$	q_{2}				
$\stackrel{\overline{10}}{2}$	q_{3}				
3	q_{4}				

State transitions in FSAs can be represented using tables.

Next Item in Sequence

State transitions in FSAs can be represented using tables.

Next Item in Sequence

		b	a	$!$	<end>
$\begin{aligned} & \mathbb{Q} \\ & \stackrel{\pi}{0} \end{aligned}$	q_{0}	q_{1}	©	©	(\%)
	q_{1}				Go to State
찬	q_{2}				
${ }_{0}^{0}$	q_{3}				
U	q_{4}				

State transitions in FSAs can be represented using tables.

Next Item in Sequence

$\begin{aligned} & \stackrel{0}{\overleftarrow{0}} \\ & \stackrel{\pi}{0} \\ & . \subseteq \end{aligned}$		b	a	!	<end>
	q_{0}	q_{1}	©	©	©
	q_{1}	©	q_{2}		
\geqslant	q_{2}				
$\stackrel{\widetilde{V}}{\stackrel{\rightharpoonup}{0}}$	q_{3}				
0	q_{4}				

State transitions in FSAs can be represented using tables.

Next Item in Sequence

		b	a	!	<end>
	q_{0}	q_{1}	(2)	\%	\%
	q_{1}	©	q_{2}	\%	©
	q_{2}	*	q_{3}		
	q_{3}				
	q_{4}				

State transitions in FSAs can be represented using tables.

Next Item in Sequence

		b	a	$!$	<end>
	q_{0}	q_{1}	(\%)	()	(\%)
	q_{1}	©	q_{2}	(\%)	(\%)
$\begin{aligned} & \text { = } \\ & \text { ي } \end{aligned}$	q_{2}	(\%)	q_{3}	(\%)	(\%)
$\stackrel{\overline{\mathrm{C}}}{\underline{D}}$	q_{3}	(\%)	q_{3}		
3	q_{4}				

State transitions in FSAs can be represented using tables.

Next Item in Sequence

		b	a	!	<end>
	q_{0}	q_{1}	(\%)	()	(\%)
	q_{1}	©	q_{2}	(\%)	(\%)
$\begin{aligned} & \text { = } \\ & \text { ي } \end{aligned}$	q_{2}	(\%)	q_{3}	(\%)	(\%)
$\stackrel{\overline{\mathrm{C}}}{\underline{D}}$	q_{3}	(\%)	q_{3}	q_{4}	
3	q_{4}				

State transitions in FSAs can be represented using tables.

Next Item in Sequence

		b	a	$!$	<end>
	q_{0}	q_{1}	(\%)	(\%)	(\%)
	q_{1}	(\%)	q_{2}	(\%)	-
	q_{2}	(\%)	q_{3}	(\%)	(\%)
	q_{3}	(2)	q_{3}	q_{4}	()
	q_{4}	©	(\%)	(\%)	()

State

transition tables simplify the process of determining whether your input will be accepted by the FSA.

- For a given sequence of items to match, begin in the start state with the first item in the sequence
- Consult the table ...is a transition to any other state permissible with the current item?
- If so, move to the state indicated by the table
- If you make it to the end of your sequence and to a final state, accept

Algorithmically, this looks like:

```
index \leftarrow beginning of sequence
current_state \leftarrow initial state of FSA
loop:
    if end of sequence has been reached:
        if current_state is an accept state:
            return accept
        else:
            return reject
        else if transition table[current_state, sequence[index]] is empty:
        return reject
    else:
        current_state \leftarrow transition_table[current_state, sequence[index]]
        index \leftarrow index + 1
```

end

Deterministic vs. Non-Deterministic FSAs

Deterministic FSA: At each point in processing a sequence, there is one unique thing to do (no choices!)

Non-Deterministic FSA: At one or more points in processing a sequence, there are multiple permissible next steps (choices!)

Deterministic or Non-Deterministic?

Deterministic or Non-Deterministic?

Deterministic or Non-Deterministic?

Every nondeterministic FSA can be converted to a deterministic FSA.

Non-

Deterministic FSAs: How to check for input acceptance?

- Either:

1. Convert the non-deterministic

FSA to a deterministic FSA and then check that version, or
2. Manage the process as a statespace search

There is at least one path through the FSA for an input that is part of the language defined by the FSA

Non-
 Deterministic FSA Search Assumptions

Not all paths through the FSA for an "accept" input lead to an accept state

No paths through the FSA lead to an accept state for an input that is not a valid member of the language

Non-
 Deterministic FSA Search

- States in the search space are pairings of sequence indices and states in the FSA
- By keeping track of which states have and have not been explored, we can systematically explore all the paths through an FSA given an input

NonDeterministic FSA Search Assumptions

- Success: Path is found for a given input that ends in an accept
- Failure: All possible paths for a given input lead to failure

Example: Non-Deterministic FSA Search

Test Input: baaa!

Example: Non-Deterministic FSA Search

Test Input: baaa!

Example: Non-Deterministic FSA Search

Test Input: baaa! ๑

Additional Characteristics of FSAs

- You can apply set operations to any FSA
- Union
- Concatenation
- Negation
- For non-deterministic FSAs, first convert to a deterministic FSA
- Intersection
- To do so, you may need to utilize an ϵ transition
- ϵ transition: Move from one state to another without consuming an item from the input sequence

Summary: Finite State Automata

- FSAs are computational models that describe regular languages
- To determine whether an input item is a member of an FSA's language, you can process it sequentially from the start to (hopefully) the final state
- State transitions in FSAs can be represented using tables
- FSAs can be either deterministic or non-deterministic

This Week's Topics

Regular expressions

Finite state automata

Thursday

Finite state transducers
Additional ways to preprocess text
Edit distance

FSAs allow us to model regular languages, but they don't allow us to define mappings between sets of items.

- How can we extend this model to accommodate those mappings?
- Finite state transducers

Finite State Transducer (FST): A special type of FSA that describes mappings between two sets of items

FSTs recognize or generate pairs of items

Finite State

 TransducersFSAs can be converted to FSTs by labeling each arc with input and output items (e.g., a:b for an input of a and an output of \mathbf{b})

Example: Simple FST

Formal Definition

- A finite state transducer can be specified by enumerating the following properties:
- The set of states, \boldsymbol{Q}
- A finite input alphabet, $\boldsymbol{\Sigma}$
- A finite output alphabet, Δ
- A start state, q_{0}
- A set of accept/final states, $\boldsymbol{F} \subseteq \mathbf{Q}$
- A transition function or transition matrix between states, $\bar{\delta}(q, i)$
- An output function giving the set of possible outputs for each state and input, $\sigma(q, i)$
- $\delta(\mathrm{q}, \mathrm{i}):$ Given a state $\mathrm{q} \in \mathrm{Q}$ and input $\mathrm{i} \in \Sigma$, $\delta(q, i)$ returns a new state q ' $\in \mathbf{Q}$.
- FSTs are compositional:
- Letting T_{1} be an FST from I_{1} to O_{1}, and
- Letting T_{2} be an FST from I_{2} to O_{2},
- The two FSTs can be composed such that the resulting FST maps directly from I_{1} to O_{2}

Formal Properties

- FSTs can be inverted:
- Letting T be an FST that maps from I to O, its inversion $\left(\mathrm{T}^{-1}\right)$ will map from O to I .

Deterministic vs. NonDeterministic FSTs

FSTs with underlying deterministic FSAs (at any state, a given input maps to at most one transition out of
the state) are called sequential transducers

Examples: Non-Deterministic and Sequential Transducers

When can we use FSTs in NLP?

- Case example: Morphological parsing
- The task of recognizing the component morphemes of words (e.g., foxes \rightarrow fox + es) and building structured representations of those components
- Morphemes:
- Small meaningful units that make up words
- Stems: The core meaning-bearing units
- Affixes: Bits and pieces that adhere to stems and add additional information
- -ed
- -ing
- -s

Example Morphological Lexicon

irreg-past-verb-form

Why is morphological parsing necessary?

- Useful for breaking language into more easily interpretable parts
- Morphemes can be productive
- Example: -ing attaches to almost every verb, including brand new words
- "Why are you Instagramming that?"
- Some languages are very morphologically complex
- Uygarlastir diklarimizdanmissinizcasina
- Uygar "civilized" + las "become"
- + tir "cause" + "not able"
- + dik "past" + lar "plural"
- + imiz "p1pl" + dan "abl"
- + mis "past" + siniz "2pl" + casina "as if"

Finite State Morphological Parsing

Goal: Take input surface realizations and produce morphological parses as output

Finite State Morphological Parsing

reg-noun	irreg-pl-noun	irreg-sg-noun
fox	go:e o:e s e	goose
cat		

Finite State Morphological Parsing

reg-noun	irreg-pl-noun	irreg-sg-noun
fox	g o:e o:e s e	goose
cat		

foxes

Finite State Morphological Parsing

reg-noun	irreg-pl-noun	irreg-sg-noun
fox	go:e o:e s e	goose
cat		

foxes

Finite State Morphological Parsing

reg-noun	irreg-pl-noun	irreg-sg-noun
fox	go:e o:e s e	goose
cat		

Finite State Morphological Parsing

reg-noun	irreg-pl-noun	irreg-sg-noun
fox	go:e o:e s e	goose
cat		

Finite State Morphological Parsing

reg-noun	irreg-pl-noun	irreg-sg-noun
fox	go:e o:e s e	goose
cat		

foxes 5 fox +N

Finite State Morphological Parsing

reg-noun	irreg-pl-noun	irreg-sg-noun
fox	go:e o:e s e	goose
cat		

foxes 4 fox +N

Finite State Morphological Parsing

reg-noun	irreg-pl-noun	irreg-sg-noun
fox	go:e o:e s e	goose
cat		

foxes 4 fox +N+PL

Summary： Finite State Transducers

－FSTs are FSAs that describe mappings between two sets
－All non－deterministic FSAs can be converted to deterministic versions， but all non－deterministic FSTs cannot
－FSTs with underlying deterministic FSAs are called sequential transducers
－FSTs are particularly useful for morphological parsing

This Week's Topics

Regular expressions
Finite state automata

Thursday
Tuesday

Finite state transducers

Additional ways to preprocess text
Edit distance

What are some other ways that we can preprocess text?

- Text tokenization is an important first step for most NLP tasks
- Often implemented using regular expressions
- Typical NLP pipeline:
- Segmenting sentences (if applicable)
- Tokenizing words
- Normalizing word formats (e.g., favourite \rightarrow favorite)

Sentence Segmentation and Text Tokenization

Alice looked all round the table, but there was nothing on it but tea. "I don't see any wine," she remarked.

How many words in a string of text?

- I do uh main- mainly business data processing
- Fragments, filled pauses
- Seuss's cat in the hat is different from other cats!
- Lemma: Words with the same stem, coarse-grained part of speech, and general word sense
- cat and cats = same lemma
- Wordform: The full inflected surface form of a word
- cat and cats = different wordforms

Types vs. Tokens

Alice looked all round the table, but there was nothing on it but tea.

- Type: an element of the vocabulary.
- Token: an instance of that type in running text.
- How many?
- 14 tokens (or 16 if punctuation is tokenized separately)
- 13 types (or 15 if punctuation is tokenized separately)

Type and Token Counts in Popular Datasets

Dataset	Tokens $=$ \mathbf{N}	Types $=$ $\mid \mathbf{V \|}$
Switchboard phone conversations	2.4 million	20 K
Shakespeare	884 K	31 K
Google N-grams	1 trillion	13 million

\boldsymbol{N} = number of tokens
$\boldsymbol{V}=$ vocabulary = set of types
$|V|$ is the size of the vocabulary

Tokenization requires many individual decisions!

- Finland's capital
- isn't
- Hewlett-Packard
- San Francisco
- a.m., Ph.D.
\rightarrow Finland 's or Finland's ?
\rightarrow is not or isn 't or is n't ?
\rightarrow Hewlett Packard or Hewlett-Packard or Hewlett- Packard or Hewlett -Packard?
\rightarrow one token or two?
\rightarrow ??

Some of these decisions are language－specific：

Contractions

－L＇ensemble \rightarrow one token or two？
－L？L＇？Le ？
－Want l＇ensemble to match with un ensemble

Tokens Not Delineated by Whitespace
－Lebensversicherungsgesellschaftsangestellter
－life insurance company employee
－莎拉波娃现在居住在美国东南部的佛罗里达。
－Sharapova now lives in Florida in the southeastern United States．

Text Normalization

- Normalization: Manipulating text such that all forms of the same word match (e.g., U.S.A. = USA, flavour = flavor, etc.)
- To normalize text, you must define equivalence classes
- Example: "." characters in a term \rightarrow not important
- Words with the same characters but different capitalization are often considered equivalent to one another (case folding)
- Example: Hello = hello
- Not a perfect strategy!
- US != us
- Useful equivalence classes vary depending on task
- Capitalization can be very important in sentiment analysis
- Reduce inflections or variant forms to base form
- am, are, is \rightarrow be
- car, cars, car's, cars' \rightarrow car
- the boy's cars are different colors \rightarrow the boy car be differ color
- Tricky because you need to find the correct dictionary headword form

Stemming

- Automatically reduces words to their stems using simple rules
- language dependent
- Example: \{automate(s), automatic, automation\} \rightarrow automat
- Pros: Very quick, simple to implement
- Cons: Groups together some words that don't really mean the same thing, and doesn't group together some words that do mean the same thing
- \{meanness, meaning\} \rightarrow mean
- \{goose\} \rightarrow goos, \{geese\} \rightarrow gees

Porter Stemming

- \quad Step 1a
- sses \rightarrow ss caresses \rightarrow caress
- ies \rightarrow i ponies \rightarrow poni
- ss \rightarrow ss caress \rightarrow caress
- $\mathrm{s} \rightarrow \varnothing$ cats \rightarrow cat
- Step 1b
- (${ }^{*} v^{*}$)ing $\rightarrow \varnothing$ walking \rightarrow walk
- sing $\quad \rightarrow$ sing
- $\left({ }^{*} \mathrm{v}^{*}\right)$ ed $\rightarrow \varnothing$ plastered \rightarrow plaster
- \quad Step 2 (for long stems)
- ational \rightarrow ate relational \rightarrow relate
- izer \rightarrow ize digitizer \rightarrow digitize
- ator \rightarrow ate operator \rightarrow operate
- ...
- \quad Step 3 (for longer stems)
- al $\rightarrow \varnothing$ revival \rightarrow reviv
- able $\rightarrow \varnothing$ adjustable \rightarrow adjust
- ate $\rightarrow \varnothing$ activate \rightarrow activ
- ...

> Much like tokenization, stemming methods generally need to be customized for specific languages!

Sentence Segmentation

- !, ? are relatively unambiguous
- . is more ambiguous
- Sentence boundary
- Abbreviations like Inc. or Dr.
- Numbers like .02\% or 4.3

This Week's Topics

Regular expressions
Finite state automata

Thursday

Finite state transducers
Additional ways to preprocess text
$\underset{H}{+}$
Edit distance

We know how to preprocess strings now ...but how can we find the distance between them?

Popular string (or other sequence) comparison technique:

- Minimum edit distance

Edit Distance

- Simple way to answer the question: How similar are two strings?
- Note: This distance is not necessarily associated with semantic distance

Other Uses of Edit Distance in NLP

- Evaluating machine translation and speech recognition using word error rate

| Spokesman confirms | senior government adviser was shot | | |
| :---: | :---: | :---: | :---: | :---: |
| Spokesman said | the senior | adviser was shot dead | |
| S | I | | I |

Minimum Edit Distance

- Assuming we have the two aligned strings on the right:
- If each operation has a cost of 1 (Levenshtein distance)
- Distance between these is 5
- If substitutions cost 2 (alternative also proposed by Levenshtein)
- Distance between them is 8

I NTE E * N I O N

How to find the minimum edit distance?

- Search for a path (sequence of edits) from the start string to the final string:
- Initial state: the word we're transforming
- Operators: insert, delete, substitute
- Goal state: the word we're trying to get to
- Path cost: what we want to minimize (the number of edits)

－However， the search

 space of all edit sequences is huge！－Lots of distinct paths wind up at the same state
－We don＇t have to keep track of all of them（just the shortest paths）

Formal Definitiont Minimum Edit Distance

- For two strings
- X of length n
- Y of length m
- We define $\mathrm{D}(i, j)$ as the edit distance between $\mathrm{X}[1 . . \mathrm{I}]$ and $\mathrm{Y}[1 . . \mathrm{J}]$
- $X[1 . .]=$. the first i characters of X
- The edit distance between X and Y is thus $\mathrm{D}(n, m)$

Intuition: Dynamic Programming

- Minimum edit distance can be solved using dynamic programming
- Stores intermediate outputs in a table
- Intuition: If some string B is in the optimal path from string A to string C , then that path must also include the optimal path from A to B
- $D(n, m)$ is computed tabularly, combining solutions to subproblems
- Bottom-up
- We compute $\mathrm{D}(\mathrm{i}, \mathrm{j})$ for small i, j
- And compute larger $\mathrm{D}(\mathrm{i}, \mathrm{j})$ based on previously computed smaller values
- i.e., compute $\mathrm{D}(i, j)$ for all $i(0<$ $i<n)$ and $j(0<j<m)$

Algorithmically, this looks like:

- Initialization

$$
\begin{aligned}
& D(i, 0)=i \\
& D(0, j)=j
\end{aligned}
$$

- Algorithm:

$$
\begin{aligned}
& \text { For each } i=1 \ldots n \\
& \text { For each } j=1 \ldots m \\
& D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j) \\
D(i, j-1)+1 \\
D(i-1, j-1)
\end{array}+\left\{\begin{array}{l}
\text { if } X(i) \neq Y(j) \\
0 ; \text { if } X(i)=Y(j)
\end{array}\right.\right.
\end{aligned}
$$

- Termination:
$\mathrm{D}(\mathrm{N}, \mathrm{M})$ is distance

The Edit Distance Table

N										
O										
I										
T										
N										
E										
T										
N										
I										
$\#$										
	\#	E	X	E	C	U	T	I	O	N

The Edit Distance Table

N	9									
O	8									
I	7									
T	6									
N	5									
E	4									
T	3									
N	2									
I	1									
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	I	O	N

The Edit Distance Table

N	9									
O	8									

The Edit Distance Table

The Edit Distance Table

N	9											
0	8											
I	7		$D(i, j)=\min$		$\left\{\begin{array}{l} D(i-1, j)+1 \\ D(i, j-1)+1 \\ D(i-1, j-1)+ \end{array}\right.$		$\left\{\begin{array}{l} 2 ; \text { if } S_{1}(i) \neq S_{2}(\mathrm{j}) \\ 0 ; \text { if } S_{1}(i)=S_{2}(\mathrm{j}) \end{array}\right.$					
T	6											
N	5											
E	4											
T	3											
N	2											
I	1	2	3	4	5	6	7					
\#	0	1	2	3	4	5	6	7	8	9		
	\#	E	X	E	C	U	T	I	0	N		

The Edit Distance Table

N	9											
0	8											
I	7		$D(i, j)=\min$		$\left\{\begin{array}{l} D(i-1, j)+1 \\ D(i, j-1)+1 \\ D(i-1, j-1)+ \end{array}\right.$		$\left\{\begin{array}{l} 2 ; \text { if } S_{1}(\mathrm{i}) \neq \mathrm{S}_{2}(\mathrm{j}) \\ 0 ; \text { if } \mathrm{S}_{1}(\mathrm{i})=\mathrm{S}_{2}(\mathrm{j}) \end{array}\right.$					
T	6											
N	5											
E	4											
T	3											
N	2											
I	1	2	3	4	5	6	7	6				
\#	0	1	2	3	4	5	6	7	8	9		
	\#	E	X	E	C	U	T	I	0	N		

The Edit Distance Table

N	9	8	9	10	11	12	11	10	9	8
O	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
T	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
E	4	3	4	5	6	7	8	9	10	9
T	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	I	O	N

Backtrace for Computing Alignments

- We know the minimum edit distance now ...but what is the alignment between the two strings?
- We can figure this out by maintaining a backtrace
- For each new cell, remember where we came from!
- $\mathrm{D}(\mathrm{i}-1, \mathrm{j})$?
- $D(i, j-1)$?
- $\mathrm{D}(\mathrm{i}-1, \mathrm{j}-1)$?
- Once we reach the end of the table (upper right corner), we can trace backward using these pointers to figure out the alignment

The Edit Distance Table

N	-				$\nabla^{11} \nabla^{12}$			1049 ¢		
0	8					∇^{11}	10	¢ 9 8 $8 \rightarrow 9$		
I	${ }^{4} 7$	6				710	9	8	$\rightarrow 9 \rightarrow 10$	
T	46	45				9	8	9	$\rightarrow 10 \rightarrow 11$	
N	4^{5}	4				8	9	10		-10
E	4	${ }_{7} 3$		5	$\rightarrow 6$		8	9		49
T	43		5	6	7	78	7	8		+ 8
N	个 ${ }^{2}$			5	6	7	8		8	77
I	41		3	4	5^{\prime}					$\rightarrow 8$
\#	0		2			$5 \rightarrow$		$\rightarrow 7 \rightarrow 8 \rightarrow 9$		
	\#	E	X	E	C	U	T	I	0	N

The Edit Distance Table

Algorithmically, this looks like:

- Base conditions:

Termination:
$D(i, 0)=i$
$D(0, j)=j$
$D(N, M)$ is distance

- Algorithm:

$$
\begin{aligned}
& \text { For each } \begin{array}{l}
i=1 \ldots n \\
\text { For each } j=1 \ldots m
\end{array} \\
& D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1 \\
D(i, j-1)+1 \\
D(i-1, j-1)+2 ;
\end{array} \begin{array}{l}
\text { if } X(i) \neq Y(j) \\
i f X(i)=Y(j)
\end{array}\right.
\end{aligned}
$$

Summary

- Text Preprocessing: Preparing text for downstream language processing tasks
- Tokenization
- Normalization
- Lemmatization
- Stemming
- Regular expressions are a powerful tool for text preprocessing!
- Edit Distance: Determining the similarity between two strings based on the number of insertions, deletions, and substitutions needed to transform one to another
- Minimum edit distance, computed using dynamic programming, allows you to find the smallest number of edits needed to do so.

